Pattern Recognition: Statistics to Deep Networks

Anil K. Jain https://www.cse.msu.edu/~jain Michigan State University

Beijing Academy of AI (BAAI) Annual Conference, June 21-23, 2020

Outline

- Beginning of Al
- Alphabet soup: AI, PR, NN, DM, DS, ML, DNN,...
- Statistics to deep networks
- Face recognition
- Privacy concerns
- Next decade of AI

Artificial Intelligence (AI)

•.... making a machine behave in ways that would be called intelligent if a human were so behaving.

McCarthy, Minsky, Rochester & Shannon, 1956

 Turing test (1951), "imitation game", tests if a computer can successfully pretend to be a human in a dialogue via screen & keyboard. *Dictionary.com*

A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955, Al Magazine, Vol. 27(4), 2006

Pattern Recognition

By pattern recognition we mean the extraction of the significant features from a background of irrelevant detail. ... it is the kind of thing that brains seem to do very well....that computing machines do not do very well yet. O.G. Selfridge, 1955

AI: General-purpose intelligence; P.R.: Domain-specific intelligence

Selfridge, "Pattern recognition and modern computers." In Proceedings of the Western Joint Computer Conf, pp. 91-93. March 1-3, 1955.

Artificial Intelligence: Many Facets

Most-Influential Technologies

https://www.washingtonpost.com/technology/2019/12/26/we-picked-most-influential-technologies-decade-it-isnt-all-bad/

6

Al Hype

"Adjusts settings, based on the load, to provide "V the most optimized washing cycle."

"We overestimated the arrival of autonomous vehicles." - Ford CEO Jim Hackett

Hype surrounding AI has peaked & troughed over the years as the abilities of the technology get overestimated and then re-evaluated. *bbc.com/news/technology-51064369*

http://www.lgnewsroom.com/2019/09/lg-washing-machines-with-artificial-intelligenceand-direct-drive-motor-roll-out-region-wide/

https://emerj.com/ai-adoption-timelines/self-driving-car-timeline-themselves-top-11-automakers/

What is a Pattern?

A pattern is the opposite of a chaos; it is an entity vaguely defined, that could be given a name.

S. Watanabe, 1985

Pattern Class

- Collection of similar, not necessarily identical, patterns
- Class is defined by a model or examples
- How to define similarity, fundamental to intelligent systems

Ginkgo

go Wallow

Spruce

Palm

Larch

Intra-class Variability

Inter-Class Similarity

Learn a compact & discriminative representation for pattern classes

www.cbsnews.com/8301-503543_162-57508537-503543/chinese-mom-shaves-numbers-on-quadruplets-heads

Representation, Matching and Similarity

Fusion of multiple representations can boost recognition performance

Assign patterns to known classes (classification) or group them to define classes (clustering)

Clustering (Unsupervised learning)

Recognition (Learning)

Model-driven Approach: Linear Discriminant (1936)

Input: Features $(x_1, x_2, ..., x_n)$ Labeled data (by pattern class) for 2 classes Statistical model: $N(\mu_1, \Sigma)$ and $N(\mu_2, \Sigma)$

Output: Class label of the input

Learning: Estimate model parameters (μ_1 , μ_2 , Σ)

14 R.A. Fisher, The Use of Multiple Measurements in Taxonomic Problems, Annals of Eugenics, 1936

Data-Driven Approach: Perceptron (1958)

First biologically motivated network that learns to classify patterns

Input: Features (x₁, x₂, ..., x_n)
Labeled data
Output: Class label of the input
Learning: Network weights (w₀, w₁,...,w_n)

15 F. Rosenblatt. The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957

Fisher's Iris Data

Iris setosa

Iris versicolor

Iris virginica

4 features (sepal length and width, petal length and width), 50 samples/class

https://archive.ics.uci.edu/ml/datasets/iris

Linearly Separable Data

Linear Discriminant and Perceptron do not work for non-linearly separable data

Linear to Quadratic Classifiers and SVM

Statistical model: $N(\mu_1, \Sigma_1)$ and $N(\mu_2, \Sigma_2)$

Nonlinear kernel: Transform data to linearly separable space

Abu-Mostafa, Magdon-Ismail, Lin, "Learning from Data", AML Book, 2012

T. W. Anderson, "Classification into Multivariate Normal Distributions with Unequal Covariance Matrices, JASA, 1960

Perceptron to Multi-layer Neural Networks

Perceptron (7 parameters to learn)

Rosenblatt's Perceptron learning algorithms

2-Hidden layer neural network (47 parameters to learn)

Backpropagation learning algorithm: Werbos, 1974; Rumelhart, Hinton & Williams, 1986

Non-Linearly Separable Data

Deep Networks

End-to-end approach to jointly learn features and predictor

Why are Deep Networks So Popular?

Large-scale annotated datasets

 ImageNet: 14M *images* from 22K classes collected from the web

Why are Deep Networks So Popular?

Faster Computation

32X Faster Training Throughput than a CPU

NVIDIA Tesla V100

RAM: **32-64 GB** Tensor Performance: **100 TFLOPS** Memory Bandwidth: **900GB/s** Cost: **\$10,664**

https://www.nvidia.com/en-us/data-center/v100

Why are Deep Networks So Popular?

Top-5 Classification Error Rates (%) on ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)*

http://www.image-net.org/challenges/LSVRC

Automated Face Recognition

Networked CCTV cameras

Entry into the Unites States

Exit from the United States

Face Search

Probe

Gallery

Find a person of interest

DeepFace

Multiple layers of neurons stacked together and connected to a small area in previous layer (120M parameters)

Taigman, Yaniv, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. "Deepface: Closing the gap to human-level performance in face verification." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1701-1708. 2014.

State-of-the-Art: Authentication

LFW (2009) TAR = 99.2% @ FAR = 0.1%

NIST IJB-S (2018) TAR = 4.86% @ FAR = 0.1%

State-of-the-Art: Search

Results on IJB-C using ArcFace* (rank-1 search accuracy = 94.5%)

29

J. Deng, J. Guo, N. Xue, & S. Zafeiriou. "Arcface: Additive angular margin loss for deep face recognition." In CVPR 2019.

Interpretability

What kind of faces does the network see?

- reconstructing the potential appearance from deep face features

High Quality

Medium Quality

Poor Quality

Visualizing CosFace* features via a decoder trained on MS-Celeb-1M (5.8M images of 85K subjects)

*CosFace: H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu. "Cosface: Large margin cosine loss for deep face recognition." In CVPR, 2018.

Y. Shi and A. K. Jain, "Probabilistic Face Embeddings", ICCV 2019.

Fairness: Demographic Bias

At most 1% difference in accuracies between race and gender classes

Figure 64: "For the mugshot images, error tradeoff characteristics for white females, black females, black males and white males.", NIST.gov Face Recognition Vendor Test (FRVT) 1:1 Ongoing, Nov. 11, 2019

Digital Image Manipulation

Security vs. Privacy

Summary

- Many of our daily tasks involve recognizing patterns: faces, vehicles, pedestrians, voice, trees, buildings,...
- Two approaches: Model-based & data-driven (deep networks)
- Training a recognition algorithm needs large labeled data
- DNs are now popular: (i) no modelling, (ii) access to large data
- DNs provide state-of-the-art: object, face & speech recognition
- DNs are "brittle" and cannot explain their actions
- Another Al Winter? (1974–1980; 1987–1993)

Next Decade of AI

- Access to labeled data: Utilize synthetic & unlabeled data
- **Domain knowledge:** Combine top-down & bottom-up
- Network capacity: How many pattern classes can it separate?
- Adversarial attacks: Brittle to robust networks
- Explainability: How does a network make a decision?
- User privacy: Safeguard users' private data
- **Global good:** Design AI to improve lives of extremely poor (~1bn)